
International Journal of Theoretical Physics, Vol. 34, No. 4, 1995 

Limitations of Boltzmann's Principle 

B. H. Lavenda l 

Received June 13, 1994 

The usual form of Boltzmann's principle assures that maximum entropy, or entropy 
reduction, occurs with maximum probability, implying a unimodal distribution. 
Boltzmann's principle cannot be applied to nonunimodal distributions, like the 
arcsine law, because the entropy may be concave only over a limited portion of 
the interval. The method of subordination shows that the arcsine distribution 
corresponds to a process with a single degree of freedom, thereby confirming 
the invalidation of Boltzmann's principle. The fractalization of time leads to 
a new distribution in which arcsine and Cauchy distributions can coexist 
simultaneously for nonintegral degrees of freedom between ,J2 and 2. 

1. THE MANY FACETS OF BOLTZMANN'S PRINCIPLE 

Boltzmann's principle, 

S = k In ~ + const (1) 

relating entropy S logarithmically to the "thermodynamic" probability 12 of 
a given state means many things to different people. We shall assume that 
temperature is measured in energy units where Boltzmann's constant is unity. 

A system at thermodynamic equilibrium will pass through all states, F1, 
Fz . . . . .  Fn. In the course of a long time to, the system will spend a total of 
ti time units in the state Fi. The longer the system spends in any of these 
states, the more probable it will be, and consequently we may expect that 
the thermodynamic probability ~ ( I ' i )  for the realization of the state Fi will 
be proportional to ti. More precisely, we shall set it equal to the fraction 
ti/to and speak about the reduction in entropy 
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where the entropy of the reference state So = In to + const is the entropy it 
would have if it did not leave that state in the course of the long time interval to. 

Let F(tiPto) represent the probability for the realization of the time 
interval ti. Then it seems reasonable that we can replace the proper fraction 
tJto in Boltzmann's principle (2) by F(tilto) to obtain a further representation 
of Boltzmann's principle 

AS(ti) = In F(tilto) (3) 

which is necessarily negative on account of the fact that F(t~l to) is a proper 
fraction. 

To simplify matters, let us consider only two states: the positive and 
the negative axes in one spatial dimension. We shall refer to to as the length 
of a path. Let us first apply Boltzmann's principle in the form (1). There are 
2 t~ paths of  length to which contribute an entropy of So = to In 2. The length 
of the path is made up of a number p of positive steps and a number of  
negative steps q such that to = p + q. The excess k = p - q will determine 
where the system is after to steps. The number of different paths to k is the 
number of ways that p positive, or q negative, steps can be chosen from the 
total to = p + q number of steps (Feller, 1968) 

to 
N2to, lto_kl=((to+k)/2) (4) 

where the binomial coefficient is understood to be zero if k and to are not 
of the same parity. Using Stirling's approximation in the form 

x! ~ x~e -x (5) 

gives an entropy of 

S(k) = In Nzto.lto-kl 

fto + k'~, /to + k~ {to - k~. /to - k~ 
= to l n ( , 0 ) -  ~ - - - ~ ) m ~ - - - ~ )  - ~----~) ,n~----~)  

which is maximized by the value k = 0. That is to say, for k = 0, (4) becomes 
the number of paths that return to the origin, for which the entropy has the 
maximum value 

S(k = O) = to ln 2 

which is the entropy of 2 t0 of length to, and consequently the entropy differ- 
ence vanishes. 

Doubling the length of the path, the probability of a return to the origin 
at epoch 2to is 
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F(to) = [\12t~ -2'0 = exp{AS(k = 0)} (6) \to/ 

which is certain, with probability 1, since the entropy difference A S ( k  = O) 

= S ( k  = O) - So vanishes. This is indeed surprising, since it is independent 
of the value of to. The problem has to do with the crudeness of Stirling's 
approximation (5). A more refined estimate of the factorial would be 

x!  ~-- xXe-X(2~rx)  1/2 (7) 

Using this approximation to evaluate the factorials in the binomial coefficient 
in (6) leads to 

1 
F(to)  - (Trto)l/z (8) 

which holds even for moderate values of to (Feller, 1968, p. 79). This is a 
rather counterintuitive result, for it states that the longer the time is, the less 
probable it will be for the system to return to the origin. We now show that 
it also leads to an erroneous expression for the. change in entropy. 

The probability that in the time interval 2to, the particle will spend 2t 
units of time on the positive axis, and hence 2(to - t) units on the negative 
axis, is 

F ( t l t ~  = k t J k  to - t } ' t = 0 , 1  . . . . .  to (9) 

This is the same as the probability that up to epoch 2t0, the last visit to the 
origin occurred at epoch 2t (Feller, 1968, p. 79). In other words, (9) can be 
viewed as the product of two probabilities of return to the origin, 

for the return in 2t units of time to the origin on the positive axis and in 
2(to - t) units of time on the negative axis. 

We already know that Stirling's approximation (5) will not suffice, and 
application of (7) to the binomial coefficient in (9) converts what was a 
d i s c r e t e  distribution into a c o n t i n u o u s  probability density, 

to 
f ( t [ t o )  - a-tit(t0 - t)]l/2 (11) 

This is the arcsine probability density because its integral is 
/ \1/2 
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The arcsine probability density (11) has the curious property that its weight 
is concentrated at the extremes of the interval with minimum probability at 
the midpoint, as shown in Fig. 1. 

Since we possess the probability distribution (9), we might be tempted 
to apply Boltzmann's principle in the form (3). We then find that although 
In[2 sin-l(.,/~)/ar] is negative semidefinite on the entire interval [0, 1], it is 
not a concave function on the same interval3 Hence, Boltzmann's principle 
in the form (3) is to be excluded. 

Availing ourselves of the approximation 

Pr(t -< T --- t + At) ~ f ( t)  At 

where we have used the mean-value theorem and evaluated f(t~) at t and t 
-< t~ -< t + At, for a small latitude At in the specification of the probability, 
we can replace the discrete F(t) in Boltzmann's principle by f ( t)  At; we get 

z~S(t) = lnf(tl to) + In At 

Since variations in the statistical latitude At are so small that they can be 
neglected with respect to variations in the first factor (Onsager, 1931), Boltz- 
mann's principle is essentially 

AS(t) = lnf( t )  + const (13) 

Introducing the arcsine probability density (11) into (13) leads to 

1 1 
AS(t)= - ~  In t - ~ In(t0 - t) + const (14) 

If the entropy is to be identified with a convex function, possessing a minimum 
at t = to~2, which would normally be the most probable value, then it would 

f ~ 9 )  

0.2 0 .4  0 .6  0 .a  i- 

Fig. 1. The arcsine density. 

2It t ransforms from a concave to a convex function at x ~ 0.72106. 
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lead to a contradiction with the second law. Hence, expression (14) is to be 
ruled out on the grounds that it is a convex function and consequently violates 
the second law. 

Since the arcsine probability density (11) has almost all of its weight 
concentrated at the extremes of the interval [0, to], we might be tempted to 
consider it in the limits t < <  to or "r < <  r0, where "r/n0 = 1 - t/to. On 
account of the fact that the distribution is symmetric, we need only treat a 
single limit. For small x, sin -1 x ~- x and, in this limit, Boltzmann's principle 
(3) becomes 

AS(t) = ~ In + const (15) 

Although this has the same form as (2), it is only valid in the asymptotic 
limit for t < < to. This implies that the entropy reduction is very small and 
consequently it gives the erroneous result of indicating a low probability, as 
compared to (2). 

As thermodynamic equilibrium is reached, the different regions of phase 
space F~ . . . . .  Fn of equal extent tend to accommodate the system for equal 
periods of time. Consider two such regions for which the system spends tl 
and t2 = to - t~ amounts of time. The entropy reduction 

AS(t0 = ln (~ /  + l n ( ~ o  q ) (16) 
\t0/ 

will be maximum when the system spends equal amounts of time in the two 
regions of phase space, t* = tol2. This gives a maximum entropy reduction 
AS(to/2) = - 2  In 2. In contrast, (15) is valid for small t, where the entropy 
reduction is very small. A similar conclusion can be made for an entropy 
reduction given by AS(T) = 1 In(x/T0), where again X/To = 1 - t/to. Therefore, 
even though (15) is a concave function, it does not represent a physically 
acceptable form of the entropy reduction: Either the entropy reduction is 
valid over  the entire interval or it is valid nowhere  in the interval. 

2. F R A C T A L  A R C S I N E  LAWS T H R O U G H  S U B O R D I N A T I O N  

Subordination is a very powerful method to derive the probability distri- 
bution of one component of a composite system. In so doing, it supersedes 
the composition law for the structure function (Khinchin, 1949), and gives 
a correct identification of the entropy reduction. The subordinated probability 
distributions that we will be dealing with here are power laws, and the 
subordination method by which they are derived can be considered as the 
origin of such distributions (Lavenda, 1994). 
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We now specify that the particle diffusing in one dimension is a Brownian 
particle whose space and temporal evolutions are connected through 

/ , ,112 

r = rol~) (17) 

where ro and to are two characteristic space and time cutoffs. We shall refer 
to (17) as the L6vy transform, after L6vy (1965), who used it to derive the 
strictly stable distribution of characteristic exponent 1/2 from the half-normal 
or Brownian motion probability density 

. . 1 / 2  

f(rlto ) = (_.2_2 ] e_r2m0 (18) 
\1rto / 

This is to say that when (17) is applied to (18) there results 

1 r0 e_r~ m (19) 
f ( t l r~ - (2m)  1/2 t 

which is the only strictly-stable distribution known in closed form. We may 
say that the L6vy transform (17) has generated a time distribution whose 
probability density is (19) by randomizing time. Alternatively, due to the 
symmetry of the process, we can say that the application of L6vy's transfor- 
mation on (19) randomizes space and generates a probability density given 
by (18). 

Suppose that we consider the randomization of the spatial increments 
so that L6vy's density (19) is the transition probability and the directing 
process (Feller, 1971) has a density given by (18). Then, equating r = ro in 
(18) and (19) and integrating over all values of r gives 

fo o f(t l to) = f ( t  I r)f(rl to) dr 

7r t +  to 

the inverted beta density, or a beta density of the second kind (Kendall and 
Stuart, 1969), as the subordinated probability density. Expressed in terms of 
the fraction 0 = t/(t + to), (20) becomes 

1 
f(O) = 7r[O(1 - 0)] 1/2 (21) 

Thus, we have derived the arcsine probability density (21) from the 
method of subordination. There is yet another way at arriving at the arcsine 
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density, and one that will shed some light on the nature of the probability 
density in relation to Boltzmann's principle. Assume that the frequency to is 
distributed according to the gamma density 

(toto)m-I e -~176 (22) f(to[/o) = to 

where to is a parameter which we may think of as a characteristic time. 
Randomizing this time and setting tot0 = toot in (22) give the Bayes distribution 
(Lavenda, 1994) 

(to0t)m- 1 e -'~ (23) 
f(/lto0) = too F(m----'--~ 

where the frequency too is now the parameter. 
Imposing the condition of resonance to = too, we find that the subordi- 

nated process has the temporal probability density 

fo o f(tlto) = f(tolto)f(tlto) dto 

1 tm-lt~ 
- - -  ( 2 4 )  

B(m, m) (t + to) 'n 

where B(m, m) = F2(m)/F(2m) is the beta function. Now, the subordinated 
probability density (24) will coincide with the inverted beta density (20) for 
m = 1/2. Since m is half the number of degrees of freedom, we conclude 
that an entropy cannot be defined for a process with a single degree of freedom. 

The arcsine probability density (21) thus corresponds to 

[O(1 - O ) ]  m - I  
f(O) = (25) 

B(m, m) 

for m = 1/2. The beta density (25) transforms from a U-shaped to N-shaped 
form as the number of degrees of freedom is increased from one to three. 
The intermediary case of two degrees of freedom corresponds to the uniform, 
or rectangular, distribution. Due to the fractalization of time, this behavior 
will change, and even for m = 1, the probability density will turn out to 
be unimodal. 

It is also important to bear in mind that the fractalization of the time 
dimension has no effect on the spatial dimension. In other words, the subordi- 
nated process to Brownian motion is the Cauchy process, independent of the 
temporal process. The same is true when we fractalize the spatial dimension; 
this does not affect the temporal process in the least. 

In light of the analogy of Brownian motion and the distribution in length 
of a polymer chain, the time interval is analogous the number of kinks n. 
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The length of a polymer chain is usually assumed to be given by the half- 
normal distribution 3 

/ 2 \1/2 
f (r )  = [ - - I  e-r2/2(R2) (26) 

The mean-square end-to-end distance of the chain containing n kinks is 
given by 

(R 2) = b2n ~' (27) 

where b is the length of a kink, and the exponent 1 - a --< 2. The lower 
limit corresponds to a Gaussian chain, while the upper limit represents a 
fully extended chain. The value ofer ~ 1 is related to excluded volume effects. 

Now, for Brownian motion the mean-square distance is related to the 
time elapsed by (R 2) = Dt, where D is the coefficient of diffusion. Thus, in 
analogy with (27) we can generalize Brownian motion to 

(R z) = Dt ~ (28) 

which for values a :~ 1 is known asfract(ion)al Brownian motion (Mandelbrot 
and Ness, 1968). Thus, the transition probability density for Brownian motion 
(18) generalizes to 

. ~ 1 / 2  

f(rlto) = ~ _ - ~  e -r2mg (29) 
\'trto ] 

where we have set D = 1, for simplicity. Its complementary probability 
density is obtained by applying the L6vy transform to (29). This results in 

a ro e_r~/2tc, (30) 
f( t lro) - (2ar/,~)l/z t 

which is a generalization of the L6vy probability density, (19). 
If R(t) is a fractal Brownian motion with transition probability density 

(29) and T(t) has the generalized L6vy probability density (30), then the 
subordinated process T(R(t)) will have a density that is derived from (20) 
and explicitly given by 

f ( t l to  ) = a__ 1 
,rrkt--z-~-a ) t~ + t ~ 

This can be considered as a generalization of the inverted beta density (20), 
and by the same change of variable it can be converted into 

[O(1 - O)W z-l 
f(O) = -- (31) 

ar 0 ~ ' + ( 1  - O )  ,~ 

3See Orr (1947), or, from a pedagogical viewpoint, de Gennes (1979). 
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f(8) 1.2 
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Fig. 2. The appearance of a local maximum in the probability density beyond the 
bifurcation point. 

which is the fractal generalization of the arcsine density (21). 
The fractal arcsine probability density (31) is able to cover the entire 

spectrum from the arcsine density where the weight is concentrated at the 
extremes, corresponding to a = 1, to a unimodel probability density for 
= 2. The bifurcation between the two occurs at e~ = ,/2. The shape of the 
probability density beyond the bifurcation point is shown in Fig. 2, while 
Fig. 3 shows the transition from a distribution which has most of its weight 
concentrated at the extremes to a unimodel distribution symmetrical about 
a~ = 1/2. Transforming back to the original time variable gives a half Cau- 
chy distribution. 

In the range ~ < o~ < 2, a local maximum of the midpoint coexists 
with the relative weights still found at the extremes. In this range, there is 
a coex i s tence  of unimodal and arcsine-type distributions, like the coexistence 
of separate phases in a first-order phase transition. An entropy reduction 
cannot be defined for such a system since it would be concave in a restricted 
region about the midpoint and convex in the remainder. 

f(9) 1.6 

Fig. 3. The transition from the arcsine density to a unimodal probability density. 



614 Lavenda 

The fractalization of time permits a continuous transformation of the 
arcsine law, for ot = 1, into the half Cauchy distribution for et = 2. The latter 
is an extreme-value distribution for largest value, whose entropy reduction is 
asymptotically given by (Lavenda, 1993) 

AS( t )  = - e -('rr/2)t/t~ (32) 

for t > > to .4 The process of  subordination transforms the Fr6chet distribution 
for maximum value, (30), with entropy reduction AS(t) = - r~ /2 t  2, into a 
half Cauchy distribution with entropy reduction (32). There is no relationship 
between the two, because the random variable and the parameter, which 
undergoes randomization, do not share a common distribution (Lavenda, 
1995). 
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